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Abstract— Motor adaptation studies can provide insight into 
how the brain handles ascending and descending neural signals 
during motor tasks, revealing how neural pathologies affect the 
capacity to learn and adapt to movement errors. Such studies 
often involve reaches towards prompted target locations, with 
adaptation and learning quantified according to Euclidean 
distance between reach endpoint and target location.  This paper 
describes methods to calculate steady-state error using 
knowledge of the distribution of univariate, bivariate, and 
multivariate steady-state reaches. Additionally, in cases where 
steady-state error is known or estimated, it does not fully describe 
underlying reach distributions that could be observed at steady-
state. Thus, this paper also investigates methods to describe 
univariate, bivariate, and multivariate steady-state reaching 
behavior using knowledge of the estimated steady-state error. 
These methods may yield a clearer understanding of adaptation 
and steady-state reaching behavior, allowing greater 
opportunities for inter-study comparison and modeling. 

I. INTRODUCTION 

Motor adaptation is the process by which motor errors are 
gradually reduced over time via modifications of movements 
on a trial-by-trial basis [1]. This process is critical for learning 
new tasks, as well as dexterously performing learned tasks. 
Numerous studies investigate motor adaptation to understand 
how learning is affected by neural pathologies [2], sensory 
feedback [3]–[6], and brain-computer interfaces [7]. 

To quantify adaptation, many studies utilize reaching 
paradigms including side-to-side [8] and center-out reaches 
[9], [10]. Subjects typically move a cursor towards a target, 
attempting to land as close to the target as possible. Errors are 
calculated as the Euclidean distance between the final cursor 
position and the target location. 

Though error gradually decreases over repeated trials, 
inherent variability in reaches guarantees errors never 
converge to zero. Instead, as reach behavior becomes more 
consistent, errors converge to some positive value. This 
steady-state error can be estimated from the distribution of 
cursor positions, defined simply by their mean and 
(co)variance. This method allows for direct calculation of 
steady-state error based on steady-state reach behavior in 
similar studies, or reach behavior as predicted by motor 
learning models. 
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The purpose of this paper is to detail methods of calculating 
the steady-state level of reaching errors during adaptation 
studies using the distribution of steady-state reaches. These 
methods provide an alternative to using Monte Carlo methods 
to approximate steady-state reaching behavior. 

Some studies, such as those investigating models of motor 
learning, simulate reaching task errors over time for different 
conditions [11]. In these cases, steady-state error remains a 
somewhat arbitrary metric and does not describe all aspects of 
reaching behavior; however, it is possible to use steady-state 
error to estimate the mean and (co)variance of steady-state 
reaches. 

In this paper we also explore the inverse process of 
describing the expected reaching behavior at convergence 
using steady-state error. Both processes are described in three 
categories of reaching tasks: univariate reaches, bivariate 
reaches, and generalized multivariate reaches. 

II. METHODS 

A. Univariate Normal Reaches 

We start with the simplest reaching tasks: univariate, or 1-
dimensional reaching tasks. These include experimental 
protocol such as oscillating side-to-side reaches [8] and cursor 
movement along a circular track [7]. In these tasks, error (𝜀) is 
defined as the absolute value of the distance between the 
cursor and the target, and steady-state error (𝜀ஶ) is defined as 
the average error achieved when the distribution of reaches has 
stabilized [12]. Even if this distribution is centered over the 
target, the average error cannot be zero unless variance is also 
zero. 

Errors for univariate reaches are described by the folded 
normal distribution [13]. Given a univariate normal 
distribution 𝑋~𝑁(𝜇, 𝜎ଶ) with probability density function 
(PDF) 𝑓(𝑥|𝜇, 𝜎ଶ),  the PDF of the folded normal distribution 
is defined as: 

 𝑓(𝑥|𝜇, 𝜎ଶ) =  
ଵ
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where 𝜇 and 𝜎ଶ are the mean and variance of the 
underlying normal distribution, respectively. Simply, the 
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likelihood of negative values is added to the likelihood of their 
corresponding positive values. 

Figure 1 shows the relationship between the normal PDF 
and the folded normal PDF. Importantly, it shows that the 
mean of the folded normal distribution is always greater than 
that of the underlying distribution. This mean is calculated as:  

 𝜇 = 𝜀ஶ =  𝜎ට
ଶ

గ
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where 𝛷(𝑥) is the standard normal cumulative density 
function (CDF) 𝐹(𝑥|0,1) [13]. This mean represents the 
average error of reaches following the underlying distribution. 
In other words, it is the same as the expected steady-state error. 
Likewise, the variance of steady-state errors is calculated as: 

 𝜎
ଶ =  𝜇ଶ + 𝜎ଶ − 𝜇

ଶ 

In summary, given a mean and variance of steady-state 
reaches, the mean and variance of reach errors can be explicitly 
calculated. 

 A special case of the folded normal distribution, known 
as the half-normal distribution, arises when the mean of 
steady-state reaches is also the position of the target [13]. 
Solving (1) for 𝜇 = 0, the PDF of the half-normal distribution 
is defined as:  

 𝑓(𝑥) =
√ଶ
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Solving (2) and (3) for 𝜇 = 0, the steady-state error for 
reaches centered over the target is calculated as: 

 𝜇 = 𝜀ஶ =  𝜎ට
ଶ

గ
 

and the variance of these errors is calculated as: 

 𝜎
ଶ = 𝜎ଶ ቀ1 −

ଶ

గ
ቁ 

This distribution can be used to describe a potential best-
case scenario, where reaching errors are solely attributed to 
inherent variability in reaches. 

Rearranging (5) to solve for 𝜎ଶ yields an explicit 
calculation of variance of steady-state reaches, given an 
estimated steady-state error 𝜀ஶ and assuming 𝜇 = 0: 

 𝜎ଶ =  
గ

ଶ
𝜀ஶ

ଶ 

Though (5) and (6) provide explicit formulae to describe 
steady-state behavior, (2) and (3) cannot be rearranged in 
provide an analytical solution for reach behavior at steady-
state. However, numerical solutions can reveal the valid 
combinations of 𝜇 and 𝜎ଶ for a given 𝜀ஶ or 𝜎

ଶ. Some possible 
solutions are detailed in Section III (A). 

B. Bivariate Normal Reaches 

Having discussed the simplest reaching tasks, we now 
move to perhaps the most common task in testing motor 
adaptation – the center-out reaching task [9], [10]. Like 
univariate reaches, errors in reach are calculated as the 
Euclidean distance between the cursor and the target. If 
bivariate reaches are distributed according to a bivariate 
normal distribution 𝑋~𝑁ଶ(𝜇, 𝛴) with PDF 𝑓(𝑥|𝜇, 𝛴), defined 
by mean 𝜇 and covariance matrix 𝛴, the PDF of absolute reach 
locations can be calculated using a bivariate folded normal 
distribution [14], as can the mean reach location [15]. Figure 2 
shows the relationship between the bivariate normal PDF and 
the bivariate folded normal PDF. 

Here, reaching errors are quantified via the Euclidean 
distance, which is constrained to positive values. However, 
although we can calculate the mean reach of a bivariate folded 
normal PDF, calculating the Euclidean distance between the 
origin and the mean reach underestimates the mean error of all 
reaches, as demonstrated by Jensen’s inequality [16]: 

 ඥ𝐸[𝑋ଵ]ଶ + 𝐸[𝑋ଶ]ଶ  ≤ 𝐸 ቂඥ𝑋ଵ
ଶ + 𝑋ଶ

ଶቃ 

𝐸[𝑋] is the expected value of bivariate random variable 
𝑋~𝑁ଶ(𝜇, 𝛴), defined as: 

 𝐸[𝑋] = ∫ 𝑥𝐹(𝑥|𝜇, 𝛴) 𝑑𝑥
ஶ

ିஶ
 

where 𝐹(𝑥|𝜇, 𝛴) is the CDF of 𝑋. It is thus necessary to 
directly calculate the expected value of the Euclidean distance 
from the bivariate normal PDF, requiring the following 
theorem [17]: 

 𝐸[𝑔(𝑋)] = ∫ 𝑔(𝑥)𝑓(𝑥|𝜇, 𝛴) 𝑑𝑥
ஶ

ିஶ
 

Applying (10) to Euclidean distance yields the expected 
error: 
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Furthermore, the expected variance of 𝑋 is defined as [17]: 

Fig. 1. Univariate folded normal PDF. 1D reaches (blue x) are normally 
distributed (blue line), but the absolute error is distributed according to a 
folded normal PDF (black line). As a result, 𝜇 < 𝜇 



 

 

 𝑉𝑎𝑟(𝑋) =  𝐸[𝑋ଶ] − 𝐸[𝑋]ଶ 

Applying (10) to (12) yields the expected variance of 
reaching errors: 
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Numerical integration allows for calculation of the 
expected mean and variance of Euclidean distance reaching 
errors following any arbitrary mean and covariance. However, 
solutions for reach behavior given an estimated steady-state 
error are not unique. Some possible solutions assuming 
independent random variables are detailed in Section III (B). 

C. Multivariate Normal Reaches 

Multivariate reaching tasks may involve endpoint reaching 
in three dimensions, endpoint or joint orientation, end effector 
state, or some combination thereof. Like the bivariate case, 
formulae have been proposed for the multivariate folded 
normal distribution [18], [19] and their mean [15]. Also like 
the bivariate case, the folded normal distribution cannot be 
used to calculate expected error, and it is necessary to directly 
calculate the expected error from the multivariate PDF. 

The derivation of expected error is simply the multivariate 
extension of (11). Given a k-dimensional multivariate normal 
distribution 𝑋~𝑁(𝜇, 𝛴), the expected error is calculated from 
the multivariate normal PDF 𝑓(𝑥|𝜇, 𝛴) as follows: 
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And the expected variance of errors is calculated as: 
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As with the bivariate case, solutions for reach behavior 
given an estimated steady-state error are not unique. 

D. Validation 

To validate the approaches presented in this paper to 
calculate expected reach error, given arbitrary reach 
distributions, proposed solutions were compared to solutions 
estimated via Monte Carlo methods. MATLAB code 
validating these methods are freely available for download on 
the Open Science Framework [20]. 

For univariate validation, 10,000 conditions were tested, 
consisting of 100 values for 𝜇 evenly distributed between 0 
and 10, and 100 values for 𝜎 evenly distributed between 0.25 

and 10. For each condition, 1,000,000 data were drawn from a 
univariate normal distribution 𝑋~𝑁(𝜇, 𝜎ଶ). The mean and 
variance of the error between generated data and the origin 
were calculated, and the difference between the Monte Carlo 
solution and those obtained from equations (2) and (3) were 
normalized by the mean error of the simulated data. 

For bivariate validation, 160,000 conditions were tested, 
consisting of 20 values each for 𝜇௫ and 𝜇௬ evenly distributed 
between 0 and 10, 20 values for 𝜎௫ evenly distributed between 
0.25 and 10, and 20 values for the ratio 

ఙ

ఙೣ
 between 1 and 10. 

For each condition, 1,000,000 data were drawn from a 
bivariate normal distribution 𝑋~𝑁ଶ(𝜇, 𝛴). The mean and 
variance of the Euclidean distance error between generated 
data and the origin were calculated, and the difference between 
the Monte Carlo solutions and those obtained from equations 
(11) and (13) were normalized by the mean error of the 
simulated data. Validation results are presented in Section III 
(C). 

III. RESULTS 

This section covers some numerical solutions of the 
univariate and bivariate reaches as detailed in Sections II (B) 
and (C), as well as the validations detailed in Section II (D). 

A. Univariate Normal Reaches 

There are two conditions for which steady-state reach 
behavior can be determined analytically. If the mean of 
reaches is 0 (i.e. centered over the target), the variance of the 
underlying distribution given an estimated steady-state 
reaching error is calculated using (7). Alternatively, if the 
variance of reaches is 0, the mean of the underlying 
distribution is the same as the estimated reaching error. 
However, solving (2) for parameters of the underlying 
distribution requires numerical methods. Figure 3 shows the 
valid combinations of 𝜇 and 𝜎ଶ for a given 𝜀ஶ. Importantly, it 

 
Fig. 2. Bivariate folded normal PDF. (a) 2D reaches are bivariate normally 
distributed. (b) The absolute positions of 2D reaches are distributed 
according to a bivariate folded normal PDF. 



 

 

shows that a linear increase in 𝜀ஶ results in an equivalent linear 
increase in maximum 𝜇, but an exponential increase in 
maximum 𝜎ଶ. 

B. Bivariate Normal Reaches 

For bivariate steady-state reaches, (11) contains 6 
parameters which can affect estimated error: 𝜇௫, 𝜇௬, 𝜎௫௫, 𝜎௬௬, 
𝜎௫௬, and 𝜎௬௫. Rotating the basis vectors to align with the 
eigenvectors of the underlying distribution sets 𝜎௫௬ = 0 and 
𝜎௬௫ = 0 and removes redundant solutions for these two 
parameters, reducing the possibility space to 4 parameters. For 
a given 𝜀ஶ, Figure 4(a) shows possible distribution means with 
defined variances, while Figure 4(b) shows possible 
distribution variances with defined means. Importantly, the 
dashed black lines show maximum possible values 
corresponding to zero variance (Figure 4(a)) and zero mean 
(Figure 4(b)). Figure 4 also shows diagonal symmetry when 
variances or means are constrained to be equivalent, but 
asymmetry otherwise. 

C. Validation 

For univariate reaches, the mean error for data generated via 
Monte Carlo methods was within 0.062% of that calculated by 
equation (2), and the variance of error was within 0.457% of 
that calculated by equation (3). 

For bivariate reaches, the mean error for data generated via 
Monte Carlo methods was within 0.040% of that calculated by 
equation (11), and the variance of error was within 0.260% of 
that calculated by equation (13). 

Taken together, reaching error and variance estimates 
procured via Monte Carlo methods closely matched those 
obtained by the methods proposed in this paper. 

IV. DISCUSSION 

In this paper, we explore methods for estimating steady-
state error during univariate, bivariate, and multivariate 
reaching tasks using the distribution of steady-state reaches. 
We also describe the inverse process, providing guidelines for 
estimating steady-state reaching behavior given an estimated 
steady-state error. Together, these may yield a clearer picture 
of adaptation and steady-state reaching behavior. 

The methods presented in this paper can also be modified 
based on predicted changes in reach behavior. For example, it 
is possible to calculate how errors will change if the 
distribution means shift, or if the covariance of reaches 
changes. Furthermore, applying various assumptions to 

reaching behavior can reveal the maxima of means or 
covariances, given a particular reaching error. This may 
provide insight into how changes in reaching error (for 
example, as a result of a visuomotor rotation) impacts reaching 
behavior. 

The proposed methods are demonstrated and validated 
assuming normally-distributed reaching behavior. However, 
these methods are generalizable to any probability distribution 
with a known PDF. Thus, they are versatile for use in studies 

 
Fig. 3. Visualization of possible univariate reaching behaviors. Plot shows 
valid means and variances of the underlying normal distribution resulting 
in an estimated steady-state error (light), as well as how these valid 
combinations change when steady-state error is doubled (dark). 

 
Fig. 4. Visualization of possible bivariate reaching behaviors. Some 
common assumptions are proposed to visualize valid mean and variance 
combinations (a) Valid means of the underlying normal distribution 
resulting in an estimated steady-state error for 𝜎௫௫

ଶ =
𝜀ಮ

ସ
. The maximum 

possible means are achieved when 𝜎௫௫
ଶ = 𝜎௬௬

ଶ = 0  (b) Valid variances 
of the underlying normal distribution resulting in an estimated steady-
state error for  𝜇௫ =

𝜀ಮ

ସ
. The maximum possible variances are achieved 

when 𝜇௫
ଶ = 𝜇௬

ଶ = 0. 



 

 

and simulations which do not constrain reaching behavior to 
normal distributions. 

In addition to the methods presented here, existing 
distributions may be valid in specific cases. For example, the 
Rayleigh distribution requires two independent random 
variables with zero mean and equal variance, as does its parent 
Chi-squared distribution. However, these do not generalize to 
arbitrary distribution means and covariances, whereas the 
methods described in this paper can handle reach distributions 
of any size, orientation, and dimensionality. 

It is possible to estimate steady-state error through direct 
calculation of previously-collected steady-state data, or by 
using Monte Carlo methods. However, applicable steady-state 
data may not be available for the specific study at hand. 
Although Monte Carlo methods are viable for estimating 
steady-state error, inverting them to provide insight into 
steady-state reaching behavior given estimated steady-state 
error may be difficult. 

The methods described in this paper provide a 
mathematical solution to estimating steady-state error of 
reaches given their probability distribution, and vice versa. 
Solutions derived from these methods provide an alternative 
to Monte Carlo methods. Furthermore, they may be used to 
gain a clearer understanding of adaptation and steady-state 
reaching behavior, ultimately allowing greater opportunities 
for inter-study comparison and modeling. 
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